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The existing linear (impedance) theory of frequency response is corrected and generalized for elec-
trodiffusion friction probes of any shape. Special attention is paid to the dynamic calibration of real
electrodiffusion probes with uncertain geometry by the potentiostatic (voltage-step) transient method.
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In most cases1–5, the electrodiffusion (ED) technique is used in hydrodynamic measure-
ments under unsteady flow conditions. For this reason, the dynamic behaviour of elec-
trodiffusion friction probes (EDFP) is of primary interest and it has been studied
intensively from the dawn of limiting diffusion current methods1,2. State of the art in
the field of linear (small-amplitude) dynamics of EDFP is given in ref.5 almost com-
pletely with an exception of the use of similarity approximation to ED impedance3 in
the analysis of the wavy film flow6.

The main purpose of the present paper is to correct the existing theory5 of frequency
response of EDFP in pulsating shear flows and to generalize it for a convex working
electrode of any shape. The common approach1,2,5 tacitly assumes that all the fun-
damental parameters of dynamic theory (geometry of the electrode, concentration and
diffusivity of the depolarizer) are known with an acceptable accuracy. However, we
interpret the same theory in terms of two parameters of a single dynamic calibration
experiment – the potentiostatic transient3,6,7 – which was analysed in our previous
paper8. New theoretical results about the response of EDFP of arbitrary convex shape
to the harmonical superposed shear flow fluctuations are presented in the form of em-
pirical formulas suitable for the computer-aided diagnostics of flow.

THEORETICAL

Formulation and Linearization of Transport Equations

When neglecting the side effects (ohmic and charge-transfer resistances, migration,
etc.) commonly encountered in any ED experiment7,8, the theory of ED transport pro-
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cesses can be simplified to unsteady convective diffusion of a single component (a
depolarizer in electrodiffusion applications) between streaming solution and a reactive sur-
face (working electrode) under one-dimensional flow kinematics. The approximation of
concentration boundary layer (high Peclet number) used in the present analysis means that:

1. Both the longitudinal and transversal diffusions are neglected.
2. Existence of a region of constant composition, c = cb, outside the diffusion layer,

z >> δ(x), is postulated.
3. Velocity field within the diffusion layer of a small ED probe is described in the

linear approximation

vx = q(t) z, vz = vy = 0. (1)

Under these assumptions, the elliptic equation, c
.
 = D∇2c, simplifies to the parabolic

form

∂tc + q(t) z ∂xc = D ∂zz
2 c (2)

with the boundary conditions which express:
1. limiting diffusion currents regime at the electrode surface,

c|z=0 = 0 ,   for (x, y) ∈ A  , (3a)

2. presence of fresh solution far from the diffusion layer,

c|z=∞ = cb  , (3b)

3. inactivity of the surface neighbouring on the electrode,

∂zc|z=0 = 0 ,   for (x, y) ∉ A  . (3c)

It can be shown for the given parabolic problem that condition (3c) can be replaced by
the assumption of undisturbed bulk solution just before the forward edge of the elec-
trode. As shown in detail in Part I of this series8, the coordinate x is locally shifted in
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such a way that x = 0 corresponds to the forward edge of EDFP at any streamline
crossing the electrode surface, so that this assumption can simply be expressed as

c|z=0 = cb ,   for x < 0  . (3d)

The ultimate aim is to determine the electric current I corresponding to the total diffu-
sion flux of a depolarizer to the electrode surface A at a given stoichiometry of the
electrode reaction. To this end, the surface distribution of the local flux densities must
be determined. By an appropriate shift of the longitudinal coordinate x, the local cur-
rent densities become independent of the transversal coordinate y:

i(x,t) = nFD ∂zc(x,z,t)|z=0  . (4)

Therefore, the transversal coordinate y is merely a parameter which need not be con-
sidered explicitly when solving the problem of the local current densities.

When studying the effect of small-amplitude periodic flow disturbances, ε → 0, in
linear approximation, it is sufficient to consider harmonic courses of the related fluctu-
ations,

q(t) = q
_
 + q~ exp (iωt) = q

_
 (1 + ε exp (iωt)) (5)

c(x,z,t) = c
_
(x,z) + c~(x,z) exp (iωt) (6a)

i(x,t) = i
_
(x) + i

~
(x) exp (iωt) =

= nFD ∂z(c
_
(x,z) + c~(x,z) exp (iωt))|z=0  . (6b)

By substituting the representations (5), (6a) into Eq. (2) and neglecting the terms of
the order of ε2 and higher, we obtain two parabolic boundary-value problems for the
steady (time-averaged) and fluctuating parts of the concentration field.

The well-known analytical solution to the steady part of the problem,

−q
_
z ∂xc

_
 + D ∂zz

2 c
_
 = 0 (7)

c
_
 |z=0 = 0 ,   c

_
 |z=∞ = cb  , (8a,b)
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provides explicit formulas for the concentration field and local flux density,

c
_
/cb = E(η)/E(∞) (9)

i
_
(x) = α1/2nFDcb/σ(x)  . (10)

All symbols are specified in Symbols and Definitions.
The boundary-value problem for the complex amplitude c~(x,z) of concentration fluc-

tuations,

−iωc~ − q
_
z ∂xc

~ + D ∂zzc
~ = q~z ∂xc

_
(11)

c~|z=0 = 0  ,        c~|z=∞ = 0  , (12a,b)

can be transformed by using the similarity arguments η, ξ,

c~/cb = 1
3
εf(η,ξ) E′(η)/E(∞)  , (13)

to the form

f ′′ − 3η2f ′ − 6η ∂ξ(ξf) − 92/3iξf = −9η2 (14)

f(η,ξ) = 0  for η = 0 ,  exp (−η3) f(η,ξ) → 0  for η → ∞ (15a,b)

with the corresponding representation of the local current densities,

i
~
(x) = 1

3
εf ′(0,ξ) i

_
(x)  . (16)

Integration of Local Current Densities for Convex Electrodes

Independence of the local current densities on the transversal coordinate y makes it
possible to reduce the surface integral in the definition of total current, I = I(t), to
quadratures:
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I(t) = I
_
 + I

~
 exp (iωt)  ,

where

I
_
 = ∫∫ i

_

A
(x) dx dy = ∫ i

_
m

0

W

(l)l dy ,   I
~
 = ∫∫ i

~

A
(x) dx dy = ∫ i

~
m

0

W

(l)l dy  . (17a,b)

The function l = l(y) characterizes the electrode shape by the distribution of local
lengths of thin strip segments, as shown in Fig. 2 of the previous paper8, and i

_
m , i

~
m

stand for the corresponding longitudinal averages along a strip of local length l = l(y)
and differential width dy,

i
_
m(l) = l−1∫  

0

 l

i
_
(x) dx ,   i

~
m(l) = l−1∫  

0

 l

i
~
(x) dx  . (18a,b)

With the obvious proportionalities, i
_
m(x)/i

_
m(a) = (x/a)−1/3, ξ(x)/ξ(a) = (x/a)2/3, and the alter-

native expression for the area, SA = ∫ l
0

W

 dy, these expressions can be further simplified:

I
_
/SA = (9

4
α)1/2nFcbD2/3(q

_
/Le)1/3 (19)

and

I
~
 / I

_
 = 1

3
ε∫ G[

0

W

ξ(l)]l2/3 dy/∫ l2/3

0

W

 dy  , (20a)

where

Le = 



∫ l

0

W

 dy/∫ l2/3

0

W

 dy




3

(21)

G[ξ] = ξ−1∫  
0

ξ
f ′(0,s) ds  . (22)

In laboratory practice, the ED probes are calibrated under transport conditions (over-
voltage, solution composition, current densities level) which are analogous to those
applied in the related hydrodynamic experiments. Commonly, the dynamic calibration
consists of determining the steady current I

_
 under a given flow speed and the speed-in-

dependent Cottrell coefficient,

kC/SA = π−1/2nFcbD1/2  , (23)
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from the early stage, I(t) ≈ kCt−1/2 , t → 0 , of the voltage-step (potentiostatic) tran-
sient3,6–8. The combination of these two calibration parameters provides the potentiostatic
transient time, t0 = (kC/I

_
)2. It is suitable to use this experimentally available time scale

for normalizing the frequency of fluctuations according to Eqs (19), (23):

Ω ≡ ωt0 = ω(I
_
/kC)2 = βξ(Le) = βψ−1ξ(L)  , (24)

where the equivalent transport length Le is defined by Eq. (21) and ψ = (L/Le)2/3. By
using this new dimensionless frequency Ω, Eq. (20a) can be rearranged in the form

I
~
 / I

_
 = 1

3
ε HA(Ω)  , (25)

where

HA(Ω) = ∫ G[(l
0

W

/Le)2/3β−1Ω]l2/3 dy/∫ l2/3

0

W

 dy  , (20b)

is the renormalized electrodiffusion impedance, HA(0) = 1. For an infinite strip of con-
stant length, l(y) = L = Le, this expression simplifies to

H(Ω) ≡ G[β−1Ω] (26)

and the general functional for an electrode with arbitrary convex surface A can be
written as

HA(Ω) = ∫ H[(l
0

W

/Le)2/3Ω]l2/3 dy/∫ l2/3

0

W

 dy  . (20c)

Solution for Local Flux Densities

The two-dimensional boundary-value parabolic problem (14), (15a,b) for determin-
ing f ′(0,ξ) has an obvious initial solution for ξ = 0,

f0(η) ≡ f(η,0) = η  , (27)
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which corresponds to the quasi-steady asymptote of the dynamic response, f′(0,0) = 1.
With this initial profile, the problem can be solved numerically by the finite-difference
method1,2 or by using series representations and integrating a consecutive set of ordi-
nary differential equations5.

Series Representation for Low Frequencies

Assuming a solution in the form of the power series,

f(η,ξ) = ∑(iξ/91/3)mfm(η) (28)

f ′(0,ξ) = ∑(iξ/91/3)m fm′(0)  , (29)

for m = 0, 1, ... , we obtain a consecutive set of linear ordinary real-valued differential
equations with homogeneous boundary conditions:

fm′′ − 3η2fm′ − 6η(m + 1)fm = 9fm−1 (30)

fm(0) = 0   and   lim
η→∞

[exp (−η3) fm(η)] = 0  . (31a,b)

We solved this problem using the Runge–Kutta integration with iterative adjusting of
the set of initial values of fm′(0) which constitutes the goal of the calculation. The
asymptotic behaviour of the functions fm  is of algebraic nature, fm(η) ≈ kmηλ(m), in
accordance with the boundary condition (31b). The coefficients km are extremely sensi-
tive to the initial conditions and change signs when the estimates of fm′(0) oscillate
closely around the correct values. This behaviour was used in an automated iteration
with halving the interval between the upper and lower estimates. The accuracy of the
results given in Table I depends merely on the accuracy of the Runge–Kutta integration.
We estimate the accuracy of the reported values of fm′(0) to 15 ÷ 18 (for 0 ≤ m < 25),
12 ÷ 15 (for 25 < m ≤ 60), and 8 ÷ 12 (for 60 < m ≤ 80) valid decimal digits. The
function f ′(0,ξ) and the corresponding coefficients fm′(0) are simply related to h′(0,ξ)
and hm′(0) in ref.5:

f ′(0,ξ)/h′(0,ξ) = 1/h0′(0) = 35/3Γ(4
3
) = 5.572416712... (32a)
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TABLE I
Coefficients of the low-frequency expansion in Eqs (29), (32a,b), and (38)

m fm′(0) hm′(0) m fm′(0) hm′(0)

 0  1.00000000000000E+00  1.79455E–01 30  3.38963527500462E–20  1.74455E–30

 1 –1.14974094664877E+00 –9.91918E–02 31 –4.02578734822197E–21 –9.96096E–32

 2  8.54159839686774E–01  3.54270E–02 32  4.68041044495344E–22  5.56741E–33

 3 –4.89124867078785E–01 –9.75290E–03 33 –5.33015164820388E–23 –3.04809E–34

 4  2.31840091629698E–01  2.22240E–03 34  5.94959900852007E–24  1.63567E–35

 5 –9.46771769768061E–02 –4.36312E–04 35 –6.51302216874309E–25 –8.60815E–37

 6  3.41912608731558E–02  7.57507E–05 36  6.99622788522909E–26  4.44539E–38

 7 –1.11224651655421E–02 –1.18465E–05 37 –7.37833618492431E–27 –2.25384E–39

 8  3.30419903435304E–03  1.69190E–06 38  7.64329180198797E–28  1.12244E–40

 9 –9.05988700729548E–04 –2.23024E–07 39 –7.78095934048320E–29 –5.49335E–42

10  2.31227739180442E–04  2.73645E–08 40  7.78770334324449E–30  2.64321E–43

11 –5.53097966347605E–05 –3.14680E–09 41 –7.66641742717581E–31 –1.25093E–44

12  1.24704202663288E–05  3.41089E–10 42  7.42603018689681E–32  5.82530E–46

13 –2.66290620916180E–06 –3.50156E–11 43 –7.08057072717885E–33 –2.67023E–47

14  5.40751321925595E–07  3.41840E–12 44  6.64791668786955E–34  1.20527E–48

15 –1.04793035528410E–07 –3.18476E–13 45 –6.14836860349893E–35 –5.35894E–50

16  1.94396512374337E–08  2.84022E–14 46  5.60319638960292E–36  2.34787E–51

17 –3.46123911271785E–09 –2.43116E–15 47 –5.03328767798436E–37 –1.01393E–52

18  5.92916083862658E–10  2.00214E–16 48  4.45800044331165E–38  4.31734E–54

19 –9.79246784548293E–11 –1.58969E–17 49 –3.89428651233348E–39 –1.81311E–55

20  1.56225512229404E–11  1.21925E–18 50  3.35611604730519E–40  7.51193E–57

21 –2.41165417953410E–12 –9.04844E–20 51 –2.85419934170942E–41 –3.07127E–58

22  3.60789578916636E–13  6.50777E–21 52  2.39597520589209E–42  1.23947E–59

23 –5.23818720978210E–14 –4.54232E–22 53 –1.98581662549150E–43 –4.93868E–61

24  7.39019154210756E–15  3.08086E–23 54  1.62539465936028E–44  1.94335E–62

25 –1.01435847364383E–15 –2.03295E–24 55 –1.31413989565272E–45 –7.55357E–64

26  1.35600440409952E–16  1.30652E–25 56  1.04974557311182E–46  2.90077E–65

27 –1.76726379786610E–17 –8.18607E–27 57 –8.28665663001798E–48 –1.10085E–66

28  2.24758965452548E–18  5.00507E–28 58  6.46572725738043E–49  4.12938E–68

29 –2.79179870216956E–19 –2.98880E–29 59 –4.98752381647689E–50 –1.53134E–69
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hm′(0) = h0′(0) 9−m/3fm′(0)  . (32b)

The values of hm′(0) given in ref.5 are correct up to 5–6 digits, except for two misprints
which should be corrected as follows: h4′(0) = 0.222249E–2 and h12′(0)  = 0.341089E–9.

With an accuracy to 8 valid digits, the known sequence fm′(0) for 25 < m < 80 fulfils
the following recurrence rule:

−fm−1′ (0)/fm′(0) = 0.85780674 Mm
1/3 + 0.1905811 Mm

−2/3  , (33)

where Mm = [(m + 0.5)(m – 1)]. The same accuracy of fm′(0)  is guaranteed when the
rule (33) is used recursively up to m = 80, starting with the known value of fm′(0) for m = 25.
We are sure that this result can be used for extrapolation which provides fm′(0) with an
accuracy to about 8 valid digits for any m > 80, i.e. the inaccuracies do not accumulate.
We will show by matching the low- and high-frequency expansions that such an accu-
racy of fm′(0) is sufficient to represent f ′(0,ξ) up to ξ = 16 with an accuracy to about 4
valid digits.

Asymptotic Expansion for High Frequencies

It follows from the recurrence rule (33) that the power series (29) is convergent for any
finite value of ξ. However, the convergence is very slow and a reasonable calculation
for ξ > 15 requires the coefficients fm′(0) to be known for m up to 150 with an accuracy
to 25 valid digits. This is rather impractical if an asymptotic expansion for high ξ is at
hand.

Substituting the expansion

f(η,ξ) ≈ ∑(92/3iξ)−(4+3m)/2 Fm(w) ,   w = (92/3iξ)1/2η (34a,b)

for m = 0, 1,..., into Eq. (14), we obtain a set of linear differential equations

F0′′ − F0 = −9w2 ,     Fm′′ − Fm = 6w2Fm−1′  − 3(3m − 1)wFm−1 (35)

with the same homogeneous boundary conditions as in Eqs (31a,b). The solution for
any m can be expressed by polynomial and exponential functions. In particular:
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F0(w) = 9[w2 + 2 − 2e−w] ,   F1(w) = −18[3w3 + 12w + e−w(w3 + 3w2 + 3w)] , …  . (36)

The corresponding values of 9−(1+m)Fm′(0) for calculating the asymptotic representation

f′(0,ξ) = ∑(iξ)−(3+3m)/29−(1+m)Fm′(0)  , (37)

m = 0, 1, ..., are given in Table II.
The results of matching the low- and high-frequency representations of f′(0,ξ) are

shown in Fig. 1 in the polar representation of f ′(0,ξ). Obviously, an acceptable match-
ing (agreement within 1 ÷ 2% of actual values of amplitude and phase shift) is only
achieved for ξ > 15.

Impedance G[ξ] for Infinite Strip: Matching Low- and High-Frequency
Representations

The complex-valued function G = G[ξ] is calculated by integration according to defini-
tion (22). We assume that the function f ′(0,ξ) can be calculated with an acceptable
accuracy from the series (29) for ξ < κ and from the asymptotic expansion (37) for ξ ≥ κ.
The corresponding representation of G for ξ ≤ κ is obvious:

G[ξ] = ∑(iξ/91/3)mfm′(0)/(m + 1) ,   m = 0, 1, …  . (38)

TABLE II
Coefficients of the high-frequency asymptotic expansion, Eq. (37)

m 9−(1+m)Fm′ (0)

0 2.000000

1 –3.333333 

2 –0.972222 

3 –4.861111 

4 –48.492959  

5 793.441358  

6 –19 183.548874      
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FIG. 1

Normalized local impedances in the polar rep-
resentation, M = | f ′(0,ξ)|, Φ = arg(f ′(0,ξ)).
Solid lines: exact result; dotted lines: single-
term asymptotic expansion, –Φ ≈ 135°, M ≈
2/ξ3/2; dashed lines for ξ → 0: –Φ ≈ 31.6° ξ,
M ≈ 1 – 0.04465 ξ2; dashed lines for ξ → ∞:
6-term asymptotic expansion, Eq. (37)

TABLE III
Test of the overlap of the low- and high-frequency representations. NH gives the number of terms in
the high-frequency part of sum in Eq. (40) with an optimized accuracy of the asymptotic expansion

κ NH Re{B(κ)} Im{ B(κ)}

 6 3 –0.0217 –3.7634

 7 4 –0.0329 –3.7182

 8 4 –0.0124 –3.6983

 9 5  0.0046 –3.7028

10 5  0.0080 –3.7130

11 5  0.0039 –3.7183

12 6 –0.0001 –3.7182

13 6 –0.0016 –3.7162

14 6 –0.0013 –3.7147

15 7 –0.0005 –3.7142

16 7 –0.0001 –3.7140

17 7 –0.0325 –3.6949

   Ref.5 – 0 –3.715 
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When calculating G = G[ξ] for ξ ≥ κ, the integral in (22) must be split into two parts,

G[ξ] ≡ ξ−1

∫  

0

κ
+ ∫ f

κ

ξ
 ′(0,s) ds




 = ξ−1B(κ) − ∑(iξ)−(3+m)/2 9−(1+m)Fm′(0) 2/(3m + 1) , (39)

where

B(κ) = κ∑(iκ91/3)m fm′(0)/(m + 1) + κ∑(iκ)−(3+m)/2 9−(1+m)Fm′(0) 2/(3m + 1) (40)

should be independent of the argument κ over an interval of κ where both the low- and
high-frequency expansions overlap, i.e. they give the same values of f′(0,κ) with an
acceptable accuracy. It is obvious from Fig. 1 that the authors5 are rather optimistic in
their claim about a fairly good overlap of low- and high-frequency representations over
the interval 6 < ξ < 13. Actually, the exact values of the impedance oscillate, with a
slowly diminishing amplitude, around their asymptotic estimates. This is also do-
cumented in Table III giving the values of the “constant” B(κ), which still oscillates in
the interval 6 < ξ < 13.

An acceptable overlap cannot be achieved until κ > 15. Using the numerical results
about B = B(κ) for κ = 16, we found the matching of the both representations of G[ξ]
with an accuracy to 4 valid digits over the interval 16 < ξ < 18, where the optimized
asymptotic representation contains only two terms. The results are documented in Table IV
using the polar representation of the complex-valued function G[ξ], as usual in the
relevant literature.

RESULTS

Infinite Strip

For a rectangular probe with sides parallel or perpendicular to the flow direction and
with neglected effect of transversal diffusion, the impedance is the same as for an infi-
nite strip of the same length L. This is given just by the fundamental impedance G =
G(ξ(L)) where ξ(L) = ωσ2(L)/D. Its selected values are given in Table IV. However,
more suitable for applications in ED measurements with real, well-calibrated probes of
uncertain geometrical parameters A, L, etc. is the renormalized representation of imped-
ance characteristics in the form H = H(Ω), see Eqs (24) and (25), whose argument can
be calculated from easily accessible calibration data on t0. The function H = H(Ω) can
be obtained by applying the transformation rule (26), H(Ω) = G[ξ(L)], Ω = β–1ξ(L) =
ωt0. The resulting numerical data about H[Ω] were represented by the following system
of empirical formulas
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Re

H[Ω]


 = 











Σk=0
4 aRk(Ω/Ω1)2k/Σk=0

4 bRk(Ω/Ω1)2k   
K(Ω/Ω1)−3/2Σk=0

4 cRk(Ω1/Ω − 1/r)k

K(Ω/Ω1)−3/2

;  Ω/Ω1 < 1
;  1 < Ω/Ω1 < r
;  r < Ω/Ω1

(41a,b,c)

−Im

H[Ω]


 = 











Σk=0
4 aIk(Ω/Ω1)2k+1/Σk=0

4 bIk(Ω/Ω1)2k                     

J(Ω/Ω1)−1 − K(Ω/Ω1)−3/2Σk=0
4 cIk(Ω1/Ω − 1/r)k

J(Ω/Ω1)−1 − K(Ω/Ω1)−3/2

;  Ω/Ω1 < 1                    
;  1 < Ω/Ω1 < r  .
;  r < Ω/Ω1  

(42a,b,c)

TABLE IV
Comparison of the new results about G(ξ) with the data from ref.5

ξ

Shift, arg(G) Amplitude, |G|

low-frequency series
high-frequency 

expansion
low-frequency series

high-frequency 
expansion

ref.5 Eq. (29) ref.5 Eq. (39) ref.5 Eq. (29) ref.5 Eq. (39)

 0   0.0   0.0 1.0000 1.0000

 1 –15.7 –15.7 0.9729 0.9729

 2 –30.5 –30.5 0.8973 0.8973

 3 –43.7 –43.7 0.7889 0.7889

 4 –54.3 –54.3 0.6688 0.6688

 5 –61.7 –61.7 –62.9 –62.0 0.5570 0.5570 0.5290 0.5397

 6 –66.1 –66.1 –65.9 –65.3 0.4670 0.4670 0.4528 0.4610

 7 –68.4 –68.4 –68.1 –67.7 0.4019 0.4019 0.3966 0.4031

 8 –69.7 –69.7 –69.9 –69.6 0.3561 0.3561 0.3532 0.3585

 9 –70.9 –70.9 –71.3 –71.1 0.3221 0.3221 0.3187 0.3231

10 –72.1 –72.1 –72.5 –72.3 0.2943 0.2944 0.2905 0.2942

11 –73.2 –73.3 –73.5 –73.3 0.2705 0.2707 0.2671 0.2702

12 –73.9 –74.2 –74.4 –74.2 0.2497 0.2503 0.2472 0.2499

13 –73.3 –75.0 –75.1 –75.0 0.2313 0.2327 0.2302 0.2326

14 –75.7 –75.8 –75.6 0.2175 0.2154 0.2175

15 –76.2 –76.3 –76.2 0.2043 0.2024 0.2043

16 –76.7 –76.7 0.1927 0.1927
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Here, Ω1 = 10β = 4.881039... and other adjustable parameters are given in Table V.
The parameters were adjusted to minimize the relative difference
∆ = max{|Re{Hemp}/Re{ Hnum} – 1|} or ∆ = max{|Im{Hemp}/Im{ Hnum} – 1|} between
the correct value Hnum and its estimate Hemp from the empirical formulas (41), (42). The
renormalized impedance H[Ω] is shown in Fig. 2 in the polar representation common in
impedance measurements.

Geometric considerations related to the impedance calculations for electrodes of ar-
bitrary shape are analogous to the problem of determining the shape-dependent poten-
tiostatic transients which was dealt with in our previous paper8. In the present work, we
use the same notation in describing the related geometric transformations and refer to
the geometric schemes given there8.

Circular Electrode

For the circle of radius R and the centre located at the point [0,R], the shape charac-
teristics can be expressed in the form l(y)/L = (l – (y/R – 1)2)1/2, L = W = 2R. The
substitution s1/2 = l(y)/L = ψC

–3/2 l(y)/Le into Eqs (21), (20c) gives

ψC = 



∫ s1/3

0

1

(1 − s)−1/2 ds/∫ s1/2

0

1

(1 − s)−1/2 ds




2

 = 1.1474442... (43a)

HC[Ω] = ∫ H[
0

1

ψCΩs1/3]s1/3(1 − s)−1/2 ds/∫ s1/3

0

1

(1 − s)−1/2 ds  . (43b)
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FIG. 2
Renormalized impedances for EDFP of
various shape. 1 Strip; 2 circles and el-
lipses; 3 triangles; 4 similarity approximation,
H*[Ω] = (1 + 2/3iΩ)–1
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TABLE V
Empirical representation of H[Ω] for different probes

k
Eq. (41a) Eq. (42a) Eq. (41b,c) Eq. (42b,c)

aRk bRk aIk bIk cRk cIk

HS[Ω] for stripe probes

  0  1.0000  1.000  2.7637  1  1  1

  1 –1.1104  5.436 –1.7748  4.269 –0.0249  0.0355

  2  2.0735 14.464  6.7994  8.934 –0.1268 –0.3738 

  3  7.6860  7.620  4.4744 10.88   2.0033  1.2465

  4 –0.0280 78.100 –0.00304 18.67  –3.5091 –0.6273 

  r  1.56  1.56

  K = KS 0.08944  0.08944

  J = JS  0.37072

  ∆max 7E–5 3E–5   1E–4   8E–5

HC[Ω] for circular and elliptic probes

  0  1  1  2.7851  1  1  1

  1 –1.793  5.0871 –0.04122  5.3453  0  0.02285

  2  7.3802 12.557 14.2682 14.8653 –0.05962 –0.02328

  3 –0.9742 31.084  4.0796 35.8976  0.21737  0.06327

  4  1.075 19.263  0.3083 17.8829 –0.16554  0.04705

  r  1.8  1.9

  K = KC  0.09687  0.09793

  J = JC  0.38457

  ∆max 3E–4 4E–4   2E–4   9E–5

HT[Ω] for triangular probes

  0  1  1  2.8426  1  1  1

  1 –0.2148  7.368  0.0043  6.5023 –0.08868  0.01727

  2 14.100 28.45 20.2759 19.4357  0.00508  0.04004

  3 –0.221 87.49 –0.2217 38.5032 –0.01178 –0.00672

  4  1.318 10.82  2.8622 22.6856  0.0085 –0.01758

  r  4  2.5

  K = KT  0.12662  0.1368

  J = JT  0.4319

  ∆max 2E–4 2E–4   2E–5   8E–5
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The integral (43b) was calculated with H[Ω] generated by summing the series (29) for
ξ < 16 and using the two-term expansion (41c) and (42c) at higher ξ. The singularities
of the integral (43b) were treated analytically by expanding the integrand into series for s →
0 and s → 1 and integrating the resulting sum term-by-term. The numerical data on HC[Ω]
were fitted with the analogous system of empirical formulas (41), (42) with the result-
ing parameters given in Table V.

Distribution of local transport lengths in the general form l(y)/L = (1 – a(y – y0)
2)1/2

can also be obtained for an ellipse of any orientation to the flow direction and, hence,
the normalized impedance characteristic is the same, HA[Ω] = HC[Ω]. The only direc-
tion-sensitive parameter of a revolving elliptical probe is the maximum transport
length, Le, ref.8.

Triangular Electrode

The shape characteristic of a right-angled triangle with the side L parallel to the flow
direction and the side w perpendicular is obviously linear, l(y)/L = y/w. The substitution
s3/5 = l(y)/L = ψC

–3/2 l(y)/Le into Eqs (21) and (20c) gives:

ψT = 



∫  

0

1

ds/∫ s1/5

0

1

 ds




2

 = 1.44 (44a)

HT[Ω] = ∫ H
0

1

[ψTΩs2/5] ds  . (44b)

The result of numerical integration was fitted in the same way as for the circular
probes. The parameters of the empirical formulas (41) and (42) are given in Table V.

By using the analogous reasoning as in ref.8, it can be shown that the normalized
impedance of any triangle is the same. The only direction-sensitive parameter of a
revolving triangular probe is the equivalent transport length8, Le.

Rectangular Electrode in a Flow of Varying Direction

The calculation of the distribution function l = l(y) for a rectangular electrode of sides
L0, w0 and angle φ is shown in ref.8. The slanted rectangle can be taken as a union of
two triangular electrodes of width wT and a single strip electrode of finite width wS. All
the three parts have a common maximum transport length L. With the known imped-
ance characteristics for strips and triangles, the expression for the direction-dependent
impedance characteristics for a revolving rectangle follows directly from the general
definitions (21) and (20c):
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ψR = [(wS + 6
5
wT)/(wS + wT)]2 (45a)

HR[Ω] = (wSH[ψRΩ] + wTHT[ψRΩ])/(wS + 6
5
wT)  , (45b)

where wS, wT are the lengths of lateral subintervals from (0, W) occupied by the rhom-
boidal and triangular parts of the rectangular electrode, respectively (see Fig. 7 in ref.8,
where the directional dependence of wS, wT, and Le is discussed in detail).

Series Representation for Low and Medium Frequencies

The impedance characteristic of any convex ED probe can be represented by a conver-
gent series. Substitution of the low-frequency series (38) into relations (20b) and (26),
and integration of the resulting sum term-by-term gives

HA[Ω] = ∑kA,m
m=0

∞

(iΩ)m = ∑ΛA
m=0

∞

(m)


iΩ
91/3β





m

 
fm′(0)
m + 1

  , (46)

where ΛA(m) are the only shape-dependent parameters,

ΛA(m) = ∫ (l
0

W

/Le)2(m+1)/3 dy/∫ (l
0

W

/Le)2/3 dy  . (47)

In particular, for stripes we have ΛS(m) = 1, for triangles ΛT(m) = (6/5)2m 5/(5 + 2m),
and

ΛC(m) = ψC
m 

Γ(m + 4
3

) Γ(11
6
)

Γ(2m + 11
6

) Γ(4
3
) (48)

for circles and ellipses. A few first coefficients kA,m  are given in Table VI.

Asymptotic Expansion for High Frequencies

If the shape characteristic l = l(y) does not contain a region where l → 0, the asymptotic
expansion for Ω → ∞ according to the result for the strip,

H[Ω] ≈ −iJS(Ω/Ω1)−1 + (1 − i)KS(Ω/Ω1)−3/2  , (49)

436 Wein, Sobolik, Tihon:

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



see Eq. (39), can be used for a correct asymptotic representation of H[ψΩ(l/L)2/3] for
(l/L)2/3Ω → ∞ in the integral transformation (20c) with the obvious result

HA[Ω] ≈ −iJA(Ω/Ω1)−1 + (1 − i)KA(Ω/Ω1)−3/2  , (50a)

where JA = pA,l JS , KA = pA,2 KS , and

pA,1 = ∫ d
0

W

y/∫ (l
0

W

/Le)2/3 dy (50b)

pA,2 = ∫ (l
0

W

/Le)−1/3 dy/∫ (l
0

W

/Le)2/3 dy  . (50c)

In other cases, the uniform convergence of integral (20c) for (l/L) → 0, Ω → ∞ should
be checked. For convex probes, with triangular ones as a limiting case, this property
can be checked before using formulas like (50a), by splitting the integral (44b) into two

parts, ∫  
0

1

= ∫  
0

ε
+ ∫

ε

1

, and neglecting the first part for ε → 0. The values of JA, KA calcu-

lated according to Eqs (50a,b,c) with the coefficients pA,k for circles or ellipses (A = C)
and triangles (A = T) given in Table VI, correspond well with the values of JA, KA

obtained by empirical fitting of the numerical data on HA[Ω], see Table V.

Non-Convex Electrodes

We demonstrated for a class of convex electrodes that the shape-dependent variations
of normalized impedance characteristics can be reflected by introducing a single shape-

TABLE VI
The coefficients kA,m and pA,m according to Eqs (46) and (50a)

m
A = S (strip) A = C (circle) A = T (triangle)

kA,m pA,m kA,m pA,m kA,m pA,m

0  1.000  1.000  1.000

1 –0.566 1.000 –0.571 1.036 –0.582 1.157

2  0.276 1.000  0.288 1.083  0.318 1.447

3 –0.467 –0.513 –0.634
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dependent parameter ψ = ψA. The following example demonstrates that such an ap-
proach cannot be applied for non-convex electrodes.

Let us consider a pair of strip segments of different lengths L, λL (λ < 1) and widths
κw, w, shown in Fig. 3. According to the definition ψ = (L/Le)

2/3, ψ can be expressed
for this geometric configuration as

ψ1/2 = (κ + λ2/3)/(κ + λ)  . (51)

Hence, there is a single-parameter family of geometric configurations with constant ψ
for λ ∈ (0,ψ–3/2). The normalized impedance characteristics for such a family with ψ1/2 = 6/5
is shown in Fig. 3 and compared with the course for triangular probes (i.e. the convex
surface with the same ψ). For the extreme case λ → ψ–3/2, κ → 0, the transient charac-
teristic is the same as for a single strip because the longer of the rectangles has zero
width and hence cannot affect the total current.

Note that this example deals with non-convex surfaces. Probably, there is a one-to-
one mapping between the form parameter ψ = ψA and the normalized impedance char-
acteristics HA[Ω] for convex surfaces, but a formal proof of this assumption was not
found. Anyway, this example shows that the normalized impedance characteristics
HA[Ω] are almost shape-independent in the region Ω < 2, see Fig. 3, for a broad class
of surfaces which are neither convex nor contiguous.
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Renormalized impedances for a parallel
combination of two stripes of various
length and width with the constant form-
parameter ψ = 36/25: 1 single strip, λ = ψ–3/2,
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0.1; dashed lines: the result for a triangle
(ψT = 36/25)
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DISCUSSION AND CONCLUSIONS

A new accurate series solution to the title problem is given, see Table I. The improved
accuracy (10–15 valid digits) and higher number of terms (80 terms directly and un-
limited number of terms from accurate extrapolation sequence, Eq. (33)) makes it
possible to use the series representation of normalized local current densities f′(0,ξ), up
to ξ = 16. The asymptotic expansion for ξ → ∞ with unlimited number of terms is
given in a simple analytical form. The comparison with the previous calculations5

shows that the series and asymptotic expansion representations do not match within
acceptable accuracy until ξ > 16 where two terms of the asymptotic expansion guaran-
tee the accuracy of G to four decimal digits. However, the inaccuracy of the local
solution does not appreciably affect the integral solution G. The maximum error of the
results given in ref.5 is 1° in arg (G[ξ]) and 1% in |G[ξ]| in the region 12 < ξ < 15
(Table IV).

The impedance characteristics normalized by the time-averaged current I
_
 and the

corresponding transient time t0, i.e. in the form HA[Ω], vary in extremely narrow limits
over the set of convex surfaces. In particular, the courses of HA[Ω] in the low-fre-
quency region, Ω < 2, are almost the same for any surface. The extreme courses corre-
spond to infinite strips (ψ = 1) and triangles (ψ = 1.44) as shown in Figs 2 and 3. The
courses for strips and circles are so close to one another that it is difficult to distinguish
them in Fig. 2. For a rough estimate, the similarity approximation3,6,8

H∗[Ω] = 1/(1 + 2
3
iΩ) (52)

seems to be quite acceptable. For more accurate calculations, the normalized imped-
ance characteristics of particular convex surfaces – strips, triangles, rectangles, circles,
and ellipses – are represented by accurate empirical formulas, see Eqs (41), (42) and
Table V.

The impedance characteristics HA[Ω], operationally defined in Eqs (24) and (25), are
normalized by the pair of parameters I

_
, t0, easily accessible from the dynamic (voltage-

step transient) calibration experiment7,8. Their use for correcting the primary ED data
on diffusion inertia of EDFP, in particular for an estimate of the cut-off frequency in
experimental turbulent spectra, should be requested in every experimental ED study.

SYMBOLS AND DEFINITIONS

(Meaning of symbols marked with *) can become obvious from Fig. 2 in ref.8)
A surface of electrode
c = c(x,z,t), concentration field of depolarizer, mol m–3

cb bulk concentration of depolarizer, mol m–3

D diffusivity of depolarizer, m2 s–1
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E(η) ≡ ∫ exp
0

η
 (−s3) ds, similarity representation of steady concentration profile

E(∞) = Γ(4
3
)

F = 96484.56 C mol–1, Faraday constant
f = f(η,ξ), complex-valued similarity representation of concentration fluctuations
G = G(ξ), normalized impedance for strip EDFP, fundamental impedance, Eq. (22)
H[Ω] = HS[Ω], renormalized impedance for strip electrode, Eq. (24)
HA[Ω] shape-dependent normalized impedance for surface A, Eq. (25)
i = i(x,y,t), local current density, A m–2

I = I(t), total current through EDFP, A
J, JA asymptotic parameters in Eqs (41), (42), (50) and Table V
K, KA asymptotic parameters in Eqs (41), (42), (50) and Table V
kC Cottrell coefficient, Eq. (23), A s1/2

l = l(y), local length of strip*), m
L maximum transport length of electrode*), m
Le equivalent transport length of electrode, Eq. (21), m
n number of electrons involved in electrode reaction
q = q(t), fluctuating wall shear rate, Eq. (1), s–1

SA area of A, m2

t time, s
t0 = (kC/I

_
)2, potentiostatic transient time, s

vx, vy, vz longitudinal, transversal, and normal velocity component, m s–1

W transport width of probe*), m
x locally shifted longitudinal coordinate*), m
y, z transversal and normal coordinates*), m
α = 9−2/3/Γ2(4

3
) , constant of Lévêque theory, Eqs (10), (19)

β = (9
4
πα)–1 = 0.48810398..., constant in definition of transient time, Eq. (24)

∆ = ∆(Ω), error of approximation to H = H(Ω), see text below Eqs (42)
∆max maximum to ∆, taken over related interval of Ω
δ(x) = 2

3
α−1/2σ(x) , Nernst thickness of diffusion layer for strip, m

ε = q~/q
_
 , normalized complex amplitude of shear rate fluctuations

η = 9–1/3z/σ(x), argument of similarity concentration profiles
ξ = ξ(x) = ωσ2(x)/D, locally normalized frequency, similarity argument in Eq. (13)

ψ = ψA ≡  (L/Le)2/3 =



∫ (l
0

W
/L)2/3 dy/∫ (l

0

W
/L) dy





2

, form parameter of working electrode

σ(x) = (Dx/q
_
)1/3, modified local thickness of diffusion layer, m

ω frequency of hydrodynamic fluctuations, rad s–1

Ω = ωt0, normalized frequency for electrode, Eq. (24)
Special symbols

∂η, ∂ξ partial derivative with respect to argument η, ξ, etc.
q
_

time average of fluctuating quantity q = q(t)
q~ complex amplitude of fluctuating quantity, q = q

_
 + q~ exp (iωt)

f′, f′′ derivatives with respect to η, e.g. f′(0,ξ) = ∂ηf(η,ξ)|η=0
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Subscripts
A arbitrary (commonly: convex and contiguous) plane surface
C circles and ellipses
R rectangles
S infinite stripes
T triangles
* similarity approximation
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