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The existing linear (impedance) theory of frequency response is corrected and generalized fc
trodiffusion friction probes of any shape. Special attention is paid to the dynamic calibration o
electrodiffusion probes with uncertain geometry by the potentiostatic (voltage-step) transient m
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In most casés®, the electrodiffusion (ED) technique is used in hydrodynamic meas
ments under unsteady flow conditions. For this reason, the dynamic behaviour of
trodiffusion friction probes (EDFP) is of primary interest and it has been stu
intensively from the dawn of limiting diffusion current methb#isState of the art in
the field of linear (small-amplitude) dynamics of EDFP is given irP mfnost com-
pletely with an exception of the use of similarity approximation to ED impedance
the analysis of the wavy film flof

The main purpose of the present paper is to correct the existingXtoédrgquency
response of EDFP in pulsating shear flows and to generalize it for a convex wc
electrode of any shape. The common apprb&éhacitly assumes that all the fun
damental parameters of dynamic theory (geometry of the electrode, concentratic
diffusivity of the depolarizer) are known with an acceptable accuracy. Howevel
interpret the same theory in terms of two parameters of a single dynamic calib
experiment — the potentiostatic transigit — which was analysed in our previol
papef. New theoretical results about the response of EDFP of arbitrary convex !
to the harmonical superposed shear flow fluctuations are presented in the form
pirical formulas suitable for the computer-aided diagnostics of flow.

THEORETICAL

Formulation and Linearization of Transport Equations

When neglecting the side effects (ohmic and charge-transfer resistances, mig
etc) commonly encountered in any ED experimiénthe theory of ED transport pro
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cesses can be simplified to unsteady convective diffusion of a single compon
depolarizer in electrodiffusion applications) between streaming solution and a reactiv
face (working electrode) under one-dimensional flow kinematics. The approximatic
concentration boundary layer (high Peclet number) used in the present analysis mea

1. Both the longitudinal and transversal diffusions are neglected.

2. Existence of a region of constant compositior, c®, outside the diffusion layer,
z>> 3(X), is postulated.

3. Velocity field within the diffusion layer of a small ED probe is described in
linear approximation

v=qt)z v,=v, =0. @

Under these assumptions, the elliptic equation D%, simplifies to the parabolic
form

o +a(t) 20,c=D 3¢ %)

with the boundary conditions which express:
1. limiting diffusion currents regime at the electrode surface,

Cl=0, for(x,y)OA , 33
2. presence of fresh solution far from the diffusion layer,

Clyoo = C° (3b)
3. inactivity of the surface neighbouring on the electrode,

0,Cl-o=0, for(x,y) OA . (30

It can be shown for the given parabolic problem that condiBopdan be replaced by
the assumption of undisturbed bulk solution just before the forward edge of the
trode. As shown in detail in Part | of this sefjehe coordinate is locally shifted in
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such a way thak = 0 corresponds to the forward edge of EDFP at any strean
crossing the electrode surface, so that this assumption can simply be expressed

Cleo=¢", forx<o0 . @3d)

The ultimate aim is to determine the electric curdecdrresponding to the total diffu:
sion flux of a depolarizer to the electrode surfécat a given stoichiometry of the
electrode reaction. To this end, the surface distribution of the local flux densities
be determined. By an appropriate shift of the longitudinal coordiatee local cur-
rent densities become independent of the transversal coorgiinate

i(xt) =nFD dc(x,zt)]- - 4

Therefore, the transversal coordingtés merely a parameter which need not be c
sidered explicitly when solving the problem of the local current densities.

When studying the effect of small-amplitude periodic flow disturbarees, 0, in
linear approximation, it is sufficient to consider harmonic courses of the related fl
ations,

q() =g+ q exp(iwt) =g (1 +& exp(iwt) (5
c(x,zt) = c(x,2) + c(x,2) exp(iwt) (6a)

i(xt) = i(X) +i(x) exp(iot) =

=nFD 9,(c(x,2) + C(x,2) exp(iot))—g - (6b)

By substituting the representatiory,((6a) into Eq. @) and neglecting the terms o
the order ofe? and higher, we obtain two parabolic boundary-value problems for
steady (time-averaged) and fluctuating parts of the concentration field.

The well-known analytical solution to tlsteady parif the problem,

-0zd,C+D 32C=0 @)

Clyo=0, Clmn=C", 8a,b
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provides explicit formulas for the concentration field and local flux density,
¢/c = E(n)/E(w) (9
i(X) = a¥2nFD/a(X) . (10)

All symbols are specified in Symbols and Definitions.
The boundary-value problem for tkemplex amplitude(x,z) of concentration fluc-
tuations,

~iwC - qza,C+D 0,8 = Gzd,C (11)

Cleo=0, Clew =0, @2a,h

can be transformed by using the similarity argumenis,

c/c” = 2f(n.€) E(n)/E() , 13

to the form
f—3n%" —6n 0:(&f) - BEF = -9n? (149
f(n,&) =0 forn =0, exp(-n° f(n,&) - 0 forn — o« (15a,H

with the corresponding representation of the local current densities,
i) = 26f'(08) (9 - (16)

Integration of Local Current Densities for Convex Electrodes

Independence of the local current densities on the transversal coorginmegtkes it
possible to reduce the surface integral in the definition of total curdrentl(t), to
quadratures:
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1) =1+1 exp(iot) ,

where

T Y V\L ~ ~ W:__

[ :J]’Au(x) dxdyzj'olm(l)l dy, | :J’J’A|(x) dxdy:J'Olm(I)I dy . 17a,b
The functionl = I(y) characterizes the electrode shape by the distribution of |

lengths of thin strip segments, as shown in Fig. 2 of the previous®papeti,, , i,
stand for the corresponding longitudinal averages along a strip of local lendth)
and differential width g,

i()= I‘lj';i_(x) dx, i ()= rlj; i(x) dx . (18a,9

With the obvious proportionalitiegn(x)/i_m(a) = (x/a)™13, &(x)/€(a) = (x/a)?3, and the alter-
W

native expression for the ar@,:_[ | dy, these expressions can be further simplified:
0

115,y = Co)VnF cPD?3(g/L) Y (19
and
~ — w W
/1 :gsjoe[aa)u% dy/_|'OI2’3dy , (209)
where
w w ﬁ
Le:§0| oly/_|'0|23 dy% (21
g
G[¢] = E‘l_[of 09 ds . (22

In laboratory practice, the ED probes are calibrated under transport conditions
voltage, solution composition, current densities level) which are analogous to
applied in the related hydrodynamic experiments. Commonly, the dynamic calibr
consists of determining the steady curreahder a given flow speed and the speed-
dependent Cottrell coefficient,

ko/S, = TTY2nFCPDY? | 23
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from the early stagel(t) =k:t™V2,t - 0, of the voltage-step (potentiostatic) tra
sient®8 The combination of these two calibration parameters provides the potentic
transient timef, = (ko/I)2 It is suitable to use this experimentally available time sc
for normalizing the frequency of fluctuations according to B, (23):

Q = wty = w(l/ky)? = BE(LY = BY (L) , 24

where the equivalent transport lendthis defined by Eq.21) and ¢ = (L/Ly)?3. By
using this new dimensionless frequerizyEq. @0a) can be rearranged in the form

e 1 HAQ) , 25
where

HAQ) = IWG[(I/LE)%B'lQ]I% dy/fwl 2y, (20
0 0

is the renormalized electrodiffusion impedanidg(0) = 1. For an infinite strip of con-
stant length](y) = L = L, this expression simplifies to

H(Q) = G[B™Q] (26)

and the general functional for an electrode with arbitrary convex suKazan be
written as

HAQ) = IZVH[(I/LQZ3Q]IZ3 dy/_|'\;vI2’3 dy . (200

Solution for Local Flux Densities
The two-dimensional boundary-value parabolic probléd),((15a,0 for determin-

ing f'(0,§) has an obvious initial solution f@r= 0,

fom) =f(n,0)=n , @7)
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which corresponds to the quasi-steady asymptote of the dynamic resp@8g~= 1.
With this initial profile, the problem can be solved numerically by the finite-differe
method-? or by using series representations and integrating a consecutive set o
nary differential equatiofis

Series Representation for Low Frequencies

Assuming a solution in the form of the power series,

f(n.&) = (i&/9¥%)™(n) (28)
f'(08) = Z(i&/91’3)mfm’(0) , (29
form=0, 1, ... , we obtain a consecutive set of linear ordinary real-valued differe

equations with homogeneous boundary conditions:

fo = 0% = 61(M+ Dfy = Iy g (30
£(0)=0 and linfexp(-n?) f()] =0 . Bla.h
n-o

We solved this problem using the Runge—Kutta integration with iterative adjustir
the set of initial values of,/(0) which constitutes the goal of the calculation. T
asymptotic behaviour of the functiofig is of algebraic naturd,(n) = k,n*™, in
accordance with the boundary conditi®1lf). The coefficientk,, are extremely sensi-
tive to the initial conditions and change signs when the estimatés(@f oscillate
closely around the correct values. This behaviour was used in an automated ite
with halving the interval between the upper and lower estimates. The accuracy
results given in Table | depends merely on the accuracy of the Runge—Kutta integ
We estimate the accuracy of the reported valudg/@) to 15+ 18 (for 0O< m < 25),
12 + 15 (for 25 <m < 60), and 8+ 12 (for 60 <m < 80) valid decimal digits. The
functionf'(0,§) and the corresponding coefficierf{$(0) are simply related t&'(0,¢)
andh,/(0) in ref>:

£'(0£)/N(0&) = Uhy'(0) = 3937 (%) = 5.572416712... 4)
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TaBLE |
Coefficients of the low-frequency expansion in Eg9)( (32ab), and (38)

m f'(0) hm(0) m ' (0) hm(0)
0 1.00000000000000E+00 1.79455E+01 30 3.38963527500462E—-20 1.74455
1 -1.14974094664877E+00 —-9.91918E+02 31 —4.02578734822197E-21 —-9.96096
2 8.54159839686774E-01 3.54270E+02 32 4.68041044495344E-22 5.56741
3  -4.89124867078785E-01 -9.75290E+03 33 -5.33015164820388E-23 —3.04809
4 2.31840091629698E-01 2.22240E+03 34 5.94959900852007E-24 1.63567
5 -9.46771769768061E-02 —-4.36312E+04 35 —6.51302216874309E-25 -8.60815
6 3.41912608731558E-02 7.57507E+05 36 6.99622788522909E-26 4.44539
7 -1.11224651655421E-02 -1.18465E+05 37 —7.37833618492431E-27 -2.25384
8 3.30419903435304E-03 1.69190E+06 38 7.64329180198797E-28 1.12244
9 -9.05988700729548E-04 —-2.23024E+07 39 —7.78095934048320E-29 -5.49335
10 2.31227739180442E-04 2.73645E+08 40 7.78770334324449E-30 2.64321
11  -5.53097966347605E—05 —3.14680E+09 41 -7.66641742717581E-31 —1.25093
12 1.24704202663288E-05 3.41089E+10 42 7.42603018689681E-32 5.82530
13  -2.66290620916180E-06 —3.50156E+11 43 —-7.08057072717885E-33 —2.67023
14 5.40751321925595E-07 3.41840E+12 44 6.64791668786955E-34 1.20527
15 -1.04793035528410E—07 -3.18476E+13 45 —6.14836860349893E-35 —5.35894
16 1.94396512374337E-08 2.84022E+14 46 5.60319638960292E-36 2.34787
17 -3.46123911271785E-09 -2.43116E+15 47 -5.03328767798436E-37 —1.01393
18 5.92916083862658E-10 2.00214E+16 48 4.45800044331165E-38 4.31734
19 -9.79246784548293E-11 -1.58969E+17 49 -3.89428651233348E-39 -1.81311
20 1.56225512229404E-11 1.21925E+18 50 3.35611604730519E-40 7.51193
21  —2.41165417953410E-12 —9.04844E+20 51 -2.85419934170942E-41 —3.07127
22 3.60789578916636E-13 6.50777E+21 52 2.39597520589209E-42 1.23947
23 -5.23818720978210E-14 —4.54232E+22 53 -1.98581662549150E-43 —4.93868
24 7.39019154210756E-15 3.08086E+23 54 1.62539465936028E—-44 1.94335
25 -1.01435847364383E-15 —2.03295E+-24 55 -1.31413989565272E-45 —7.55357
26 1.35600440409952E-16 1.30652E+25 56 1.04974557311182E-46 2.90077
27 -1.76726379786610E-17 —8.18607E+27 57 —-8.28665663001798E-48 —1.1008%5
28 2.24758965452548E-18 5.00507E+28 58 6.46572725738043E-49 4.12938
29 -—2.79179870216956E-19 —2.98880E+29 59 —4.98752381647689E-50 —1.53134
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hyy (0) = hy'(0) 9™2,(0) . (320)

The values oh,,(0) given in ref are correct up to 5-6 digits, except for two misprit
which should be corrected as folloving’(0) = 0.222249E-2 anld,,'(0) = 0.341089E-9.

With an accuracy to 8 valid digits, the known sequdp@®@) for 25 <m < 80 fulfils
the following recurrence rule:

~f ', (0)/f./(0) = 0.857806 743 + 0.190581M-23 | 33)

whereM,, = [(m + 0.5)(n — 1)]. The same accuracy f§f (0) is guaranteed when th
rule 33) is used recursively up ta = 80, starting with the known value §3f (0) for m = 25.
We are sure that this result can be used for extrapolation which préyi@swith an
accuracy to about 8 valid digits for amy> 80,i.e. the inaccuracies do not accumulat
We will show by matching the low- and high-frequency expansions that such an
racy off,, (0) is sufficient to represerit(0.§) up to& = 16 with an accuracy to about
valid digits.

Asymptotic Expansion for High Frequencies

It follows from the recurrence rul@3) that the power serie29) is convergent for any
finite value of§. However, the convergence is very slow and a reasonable calcul
for § > 15 requires the coefficientg (0) to be known fom up to 150 with an accuracy
to 25 valid digits. This is rather impractical if an asymptotic expansion for&igtat
hand.

Substituting the expansion

f(n.&) = ) (PHE) M2 F (w), w=(97%)Vn (34a.h
form=0, 1,..., into Eqg.14), we obtain a set of linear differential equations
Fo' —Fo=-9W?, F.,' -F,=6wF, —3@Bm-1wF,, (39

with the same homogeneous boundary conditions as in #gsl). The solution for
anym can be expressed by polynomial and exponential functions. In particular:
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Fow) =9W? +2-2e™"], Fj(w)=-18[33+ 12w + e (W + 3w + 3w)] , ... . (36)
The corresponding values of8™F '(0) for calculating the asymptotic representatic
F(08) = Y (ig)y C=m2gmE (q) @7

m=0, 1, ..., are given in Table II.

The results of matching the low- and high-frequency representatiof\® &j are
shown in Fig. 1 in the polar representatiorf §D.£). Obviously, an acceptable matct
ing (agreement within * 2% of actual values of amplitude and phase shift) is o
achieved fog > 15.

Impedance (] for Infinite Strip: Matching Low- and High-Frequency
Representations

The complex-valued functio® = G[£] is calculated by integration according to defir
tion (22). We assume that the functidn(0,£) can be calculated with an acceptat
accuracy from the serie9) for & < k and from the asymptotic expansi@v) for > k.
The corresponding representation®for ¢ < k is obvious:

G[E] = 5 (/9% (0/(m+1), m=0,1, ... . g9

TasLE Il
Coefficients of the high-frequency asymptotic expansion, B@. (

m 9 ™mE 1 (0)

2.000000
—3.333333
—0.972222
—4.861111

—48.492959
793.441358
—19 183.548874

D U1~ W N P O
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TasLe Il
Test of the overlap of the low- and high-frequency representafiigives the number of terms ir
the high-frequency part of sum in Ed0f with an optimized accuracy of the asymptotic expansit

K NH Re{B(k)} Im{ B(k)}
6 3 -0.0217 -3.7634
7 4 —0.0329 -3.7182
8 4 -0.0124 —3.6983
9 5 0.0046 -3.7028

10 5 0.0080 -3.7130
11 5 0.0039 -3.7183
12 6 —0.0001 -3.7182
13 6 —0.0016 -3.7162
14 6 —0.0013 -3.7147
15 7 —0.0005 -3.7142
16 7 —0.0001 -3.7140
17 7 —0.0325 —3.6949
Ref? - 0 -3.715

0.01

120
. Fe. 1
- Normalized local impedances in the polar re
60 resentationM = |f'(0£)|, ® = argf'(0,)).

Solid lines: exact result; dotted lines: single
term asymptotic expansion®-= 135, M =
2/%2 dashed lines fof - 0: - = 31.6 &,

o ‘ N C o] M =1 — 0.04465%2; dashed lines foE - oo
10 & 20 @-term asymptotic expansion, EQ7f

\WWII‘WWWIW[!II
TR R B S

=
N
[62]
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When calculatings = G[€] for & > Kk, the integral inZ2) must be split into two parts,
ot =57, + (09 S EIB00 ~ 3 (€O SO (0) 2(am ), @9)
where
B(K) =k S (K9¥)™ £,/ (0)(m+ 1) + Ky (i) ™2 9"*mE 1(0) 2(3m+1)  (40)

should be independent of the argumeeriver an interval ok where both the low- anc
high-frequency expansions overldpg. they give the same values BH0,) with an
acceptable accuracy. It is obvious from Fig. 1 that the althoesrather optimistic in
their claim about a fairly good overlap of low- and high-frequency representations
the interval 6 <€ < 13. Actually, the exact values of the impedance oscillate, wi
slowly diminishing amplitude, around their asymptotic estimates. This is also
cumented in Table Il giving the values of the “constaB(K), which still oscillates in
the interval 6 < < 13.

An acceptable overlap cannot be achieved unti 15. Using the numerical result
aboutB = B(k) for k = 16, we found the matching of the both representatio® &jf
with an accuracy to 4 valid digits over the interval 1 < 18, where the optimizec
asymptotic representation contains only two terms. The results are documented in T
using the polar representation of the complex-valued funddifd), as usual in the
relevant literature.

RESULTS

Infinite Strip

For a rectangular probe with sides parallel or perpendicular to the flow directior
with neglected effect of transversal diffusion, the impedance is the same as for a
nite strip of the same length This is given just by the fundamental impedafce
G(¢(L)) where&(L) = wo?(L)/D. Its selected values are given in Table IV. Howev
more suitable for applications in ED measurements with real, well-calibrated prok
uncertain geometrical parametésd, etc.is the renormalized representation of impe
ance characteristics in the fotrh= H(Q), see Eqs44) and @5), whose argument car
be calculated from easily accessible calibration datt.orhe functionH = H(Q) can
be obtained by applying the transformation ri2é)(H(Q) = G[§(L)], Q = B%&(L) =
wty. The resulting numerical data abditQ] were represented by the following syste
of empirical formulas
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(3 08 QIQ )M b QIQY* 5 QIQ, <1
ReH[Q]]= H<(Q/Ql)‘3’22‘k‘:Och(QllQ -Unk ; 1<Q/Q;<r  (4l1a,b,)

(/)% r<QIQ,
(B0 QIQ )Y 2 by (QIQ )™ ; QIQ; <1
—IMH[Q]] = BQ/Q) ™ - K(Q/Q,) 3254 16i(Q/Q - Ur)k ; 1<QIQ, <r .(42a,b,9
Q/Q) ™ - K(Q/Q) > 1 <QIO,

TaBLE IV
Comparison of the new results ab@&(£) with the data from ref.

Shift, arg@) Amplitude, (3|

3 low-frequency series high-frequency low-frequency series high-frequency

expansion expansion
ref> Eq. 29) ref> Eq. 39 ref> Eq. 29) ref> Eq. 89

0 0.0 0.0 1.0000 1.0000

1 -15.7 -15.7 0.9729 0.9729

2 -305 -30.5 0.8973 0.8973

3 437 —43.7 0.7889 0.7889

4 543 -54.3 0.6688 0.6688

5 -61.7 -61.7 -62.9 -62.0 0.5570 0.5570 0.5290 0.539
6 -66.1 -66.1 -65.9 -65.3 0.4670 0.4670 0.4528 0.461(
7 -68.4 -68.4 -68.1 -67.7 0.4019 0.4019 0.3966 0.403:
8 -69.7 -69.7 -69.9 —69.6 0.3561 0.3561 0.3532 0.358¢
9 -70.9 -70.9 -71.3 -71.1 0.3221 0.3221 0.3187 0.323:
10 -721 -72.1 -72.5 -72.3 0.2943 0.2944 0.2905 0.294!
11 -73.2 -73.3 -73.5 -73.3 0.2705 0.2707 0.2671 0.270:
12 -739 -74.2 -74.4 -74.2 0.2497 0.2503 0.2472 0.249¢
13  -733 -75.0 -75.1 -75.0 0.2313 0.2327 0.2302 0.232¢
14 —75.7 —75.8 —75.6 0.2175 0.2154 0.2175
15 -76.2 -76.3 -76.2 0.2043 0.2024 0.2043
16 -76.7 -76.7 0.1927 0.1927
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Here,Q; = 103 = 4.881039... and other adjustable parameters are given in Tab
The parameters were adjusted to minimize the relative differe
A = max{|ReHemg/Re{Hpyt — 1[} or A = max{|Im{Hemg/Im{ Hyyt — 1[} between
the correct valuél, ,and its estimateél.,,from the empirical formulasiq), (42). The
renormalized impedandg[Q] is shown in Fig. 2 in the polar representation commor
impedance measurements.

Geometric considerations related to the impedance calculations for electrodes
bitrary shape are analogous to the problem of determining the shape-dependent
tiostatic transients which was dealt with in our previous Fajpethe present work, we
use the same notation in describing the related geometric transformations and r
the geometric schemes given tHere

Circular Electrode

For the circle of radiuR and the centre located at the pointR]Q,the shape charac
teristics can be expressed in the fay)/L = (I — (/R — 19)Y2 L = W = 2R. The
substitutions? = I(y)/L = gc3?1(y)/L.into Eqgs 1), (209 gives

We= a:)slﬂ(l -9 2 dsff :)3”2(1 -9 V2 s = 1.1474442... 433)
0

HelQl = :)H[l]JCQSm] s3(1 - 92 aslf Cl)sﬂ3(1 -9 V2(gs . 43h)

[H -

0.1
90

—arg(H), °

45

Fic. 2
Renormalized impedances for EDFP of
various shapel Strip; 2 circles and el-
lipses; 3 triangles;4 similarity approximation,
H[Q] = @ + 2/3¢)7t ! — 'Q‘ TR

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



434

Wein, Sobolik, Tihon:

TaBLE V

Empirical representation dii[Q] for different probes

Eq. @19 Eqg. @239 Eg. @1b,9  Eqg. @2b,9
k
ARk PRk Ak by Crk Cik
HJ Q] for stripe probes
0 1.0000 1.000 2.7637 1 1 1
1 -1.1104 5.436 -1.7748 4.269 —0.0249 0.0355
2 2.0735 14.464 6.7994 8.934 -0.1268 -0.3738
3 7.6860 7.620 4.4744 10.88 2.0033 1.2465
4 -0.0280 78.100 —0.00304 18.67 -3.5091 -0.6273
r 1.56 1.56
K =Ks 0.08944 0.08944
J=Js 0.37072
Amax 7TE-5 3E-5 1E-4 8E-5
H[Q] for circular and elliptic probes
0 1 1 2.7851 1 1 1
1 -1.793 5.0871 —0.04122 5.3453 0 0.02285
2 7.3802 12.557 14.2682 14.8653 —0.05962 —-0.02328
3 -0.9742 31.084 4.0796 35.8976 0.21737 0.06327
4 1.075 19.263 0.3083 17.8829 —-0.16554 0.04705
r 1.8 1.9
K =Kc 0.09687 0.09793
J=Jc 0.38457
Amax 3E4 4E-4 2E-4 9E-5
H-[Q] for triangular probes

0 1 1 2.8426 1 1 1
1 -0.2148 7.368 0.0043 6.5023 —0.08868 0.01727
2 14.100 28.45 20.2759 19.4357 0.00508 0.04004
3 -0.221 87.49 -0.2217 38.5032 -0.01178 —0.00672
4 1.318 10.82 2.8622 22.6856 0.0085 —0.01758
r 4 2.5
K =Kr 0.12662 0.1368
J=Jr 0.4319
A 2E-4 2E-4 2E-5 8E-5
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The integral 43b) was calculated withH[Q] generated by summing the seri@8)(for
¢ < 16 and using the two-term expansidid) and @2¢ at higher. The singularities
of the integral 43 were treated analytically by expanding the integrand into serigs-for
0 ands - 1 and integrating the resulting sum term-by-term. The numerical déig] G
were fitted with the analogous system of empirical formudd}, (42) with the result-
ing parameters given in Table V.

Distribution of local transport lengths in the general fo(VL = (1 —a(y — y,)9)*?
can also be obtained for an ellipse of any orientation to the flow direction and, h
the normalized impedance characteristic is the s&tg&] = H[Q]. The only direc-
tion-sensitive parameter of a revolving elliptical probe is the maximum trans
length,L,, ref8.

Triangular Electrode

The shape characteristic of a right-angled triangle with thelsiolgrallel to the flow
direction and the side perpendicular is obviously lined(y)/L = y/w. The substitution
5= I(y)/L = Y3?1(y)/L,into Eqgs R1) and @O¢) gives:

11 5l

W= a’ ds/J' s¥5ds = 1.44 @49
o Jo 0

Ho[Q] = J':)H[qJTQs%] ds | @4b)

The result of numerical integration was fitted in the same way as for the cir
probes. The parameters of the empirical formudd3 &nd @2) are given in Table V.

By using the analogous reasoning as infref.can be shown that the normalize
impedance of any triangle is the same. The only direction-sensitive paramete
revolving triangular probe is the equivalent transport Iéhdth

Rectangular Electrode in a Flow of Varying Direction

The calculation of the distribution functidr= I(y) for a rectangular electrode of side
Lo, Wo and anglep is shown in ref. The slanted rectangle can be taken as a unio
two triangular electrodes of width; and a single strip electrode of finite widil. All
the three parts have a common maximum transport ldngtkith the known imped-
ance characteristics for strips and triangles, the expression for the direction-dep
impedance characteristics for a revolving rectangle follows directly from the ge
definitions @1) and @009):
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Wg = [(Ws + wp)/(ws + wq)]? (453

HRIQ] = (WeH[WRQ] + WrH[WRQI)/(Ws + gwr) (45b

wherewg, Wy are the lengths of lateral subintervals from\{f),occupied by the rhom:-
boidal and triangular parts of the rectangular electrode, respectively (see Fig. , ir
where the directional dependencewaf wy, andL.is discussed in detail).

Series Representation for Low and Medium Frequencies

The impedance characteristic of any convex ED probe can be represented by a ¢
gent series. Substitution of the low-frequency sed38} ifito relations 20b) and @6),
and integration of the resulting sum term-by-term gives

° : iQ [ f, (0
AR = 3 hunli)"= 3 A0 mB (6
M0 =0

where/\,(m) are the only shape-dependent parameters,

A = (L5 ay” (175 @7

In particular, for stripes we havegm) = 1, for triangles\(m) = (6/5F™5/(5 + 2m),
and

rEAre)
Ae(m) =Yg e (%) (48)

for circles and ellipses. A few first coefficierkg ., are given in Table VI.

Asymptotic Expansion for High Frequencies
If the shape characteristic 1(y) does not contain a region wheére 0, the asymptotic
expansion folQ — o according to the result for the strip,

HIQ] = -134QIQ)t + (1 - )KLQ/Q,) 3?2 | 49
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see Eq. 39), can be used for a correct asymptotic representatidt{\p€(l/L)%?] for
(IlL)*3Q - oo in the integral transformatior2Qc) with the obvious result

HALQ] = —iJA(Q/Q) ™1 + (1 - )KA(Q/IQ) %2, (509
whereJ, = pa;Js, Ka=pasKs, and

W W
Pas = oyff (LI dy (50b)

ona= (1LY oyl (VL2 dy 500
0 0

In other cases, the uniform convergence of integ@®@d)(for (/L) - 0,Q - o should
be checked. For convex probes, with triangular ones as a limiting case, this pri
can be checked before using formulas l&@d], by splitting the integral4@b) into two

1 € 1
parts,J'O:_|'O+_|'e , and neglecting the first part fer— 0. The values 0d,, K, calcu-

lated according to Eq$0a,b,9 with the coefficientsgp, for circles or ellipsesX = C)
and triangles A = T) given in Table VI, correspond well with the valuesJaf K,
obtained by empirical fitting of the numerical datatdfQ], see Table V.

Non-Convex Electrodes

We demonstrated for a class of convex electrodes that the shape-dependent va
of normalized impedance characteristics can be reflected by introducing a single

TasLE VI
The coefficientsk,  andp, . according to Egs4€) and 602)

A = S(strip) A =C (circle) A =T (triangle)
m
Kam Pam Ka,m Pam Kam Pam
0 1.000 1.000 1.000
1 —-0.566 1.000 -0.571 1.036 —-0.582 1.157
2 0.276 1.000 0.288 1.083 0.318 1.447
3 —-0.467 -0.513 -0.634

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



438 Wein, Sobolik, Tihon:

dependent parametdr = Y,. The following example demonstrates that such an
proach cannot be applied for non-convex electrodes.

Let us consider a pair of strip segments of different lenigths (A < 1) and widths
kw, w, shown in Fig. 3. According to the definitiam= (L/Ly)%3, @ can be expressec
for this geometric configuration as

W2 = (K + AZ3)/(K + ) . G1)

Hence, there is a single-parameter family of geometric configurations with codist
for A O (O4~2?). The normalized impedance characteristics for such a familypi 6/5
is shown in Fig. 3 and compared with the course for triangular prabethé convex
surface with the samg). For the extreme case - =22 k - 0, the transient charac
teristic is the same as for a single strip because the longer of the rectangles h
width and hence cannot affect the total current.

Note that this example deals with non-convex surfaces. Probably, there is a o
one mapping between the form paramejier Y, and the normalized impedance che
acteristicsHA[Q] for convex surfaces, but a formal proof of this assumption was
found. Anyway, this example shows that the normalized impedance characte
HA[Q] are almost shape-independent in the redds 2, see Fig. 3, for a broad cla:
of surfaces which are neither convex nor contiguous.

[H]
g'ol Fic. 3
Renormalized impedances for a parall
—arg(H), ° combination of two stripes of various

length and width with the constant form

parameter} = 36/25:1 single striph = (2

K=0:2A= 082 k=0.4;3A=02)"?

K=054A=0W"°% k=045

0.057%2 k = 0.3; 6 A = 0.0W~%2 k

. L 0.1; dashed lines: the result for a triang
1 o 10 (W =36/25)

45
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DISCUSSION AND CONCLUSIONS

A new accurate series solution to the title problem is given, see Table I. The imp
accuracy (10-15 valid digits) and higher number of terms (80 terms directly an
limited number of terms from accurate extrapolation sequence,38)). rhakes it
possible to use the series representation of normalized local current dd1{8ifEsup
to & = 16. The asymptotic expansion fr- o with unlimited number of terms is
given in a simple analytical form. The comparison with the previous calculati
shows that the series and asymptotic expansion representations do not match
acceptable accuracy ungl> 16 where two terms of the asymptotic expansion gual
tee the accuracy of to four decimal digits. However, the inaccuracy of the lo
solution does not appreciably affect the integral soluBohe maximum error of the
results given in ret.is 1° in arg G[¢]) and 1% in G[€]| in the region 12 <€ < 15
(Table 1V). _

The impedance characteristics normalized by the time-averaged clraedt the
corresponding transient tinig, i.e. in the formH,[Q], vary in extremely narrow limits
over the set of convex surfaces. In particular, the coursé4,[@] in the low-fre-
quency regionQ < 2, are almost the same for any surface. The extreme courses:
spond to infinite stripsy{ = 1) and trianglesy( = 1.44) as shown in Figs 2 and 3. Tt
courses for strips and circles are so close to one another that it is difficult to distir
them in Fig. 2. For a rough estimate, the similarity approximafién

HJQ] = U(1 +2iQ) (52

seems to be quite acceptable. For more accurate calculations, the normalized

ance characteristics of particular convex surfaces — strips, triangles, rectangles,
and ellipses — are represented by accurate empirical formulas, seélEdg43) and

Table V.

The impedance characteristidg[Q], operationally defined in Eq24) and @5), are
normalized by the pair of parametérs,, easily accessible from the dynamic (voltag
step transient) calibration experiméhtTheir use for correcting the primary ED da
on diffusion inertia of EDFP, in particular for an estimate of the cut-off frequenc
experimental turbulent spectra, should be requested in every experimental ED st

SYMBOLS AND DEFINITIONS

(Meaning of symbols marked witH &an become obvious from Fig. 2 in ff.
A surface of electrode

c = ¢(x,z,), concentration field of depolarizer, mof-
cP bulk concentration of depolarizer, mot#n
D diffusivity of depolarizer, rhs™
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Amax

3(x)

e m>

Q

)

w
Q

n
EJ' exp(-sd) ds, similarity representation of steady concentration profile
0

=1(3)

= 963484.56 C mol, Faraday constant

=f(n,§), complex-valued similarity representation of concentration fluctuations
= G(£), normalized impedance for strip EDFP, fundamental impedance2Bq. (
= HJQ], renormalized impedance for strip electrode, 249) (
shape-dependent normalized impedance for sudaés). @5)
=i(x,y,1), local current density, A T

= |(t), total current through EDFP, A

asymptotic parameters in Eg&l], (42), (50) and Table V
asymptotic parameters in Eg&l], (42), (50) and Table V
Cottrell coefficient, Eq.Z23), A s*2

= I(y), local length of stript m

maximum transport length of electrodien

equivalent transport length of electrode, E2{)(m

number of electrons involved in electrode reaction

= q(t), fluctuating wall shear rate, EqL)( s*

area ofA, m?

time, s

= (kof1)?, potentiostatic transient time, s

longitudinal, transversal, and normal velocity component;’m s
transport width of probé*m

locally shifted longitudinal coordinaté*m

transversal and normal coordinatesh

= 9‘2’3/F2(g) , constant of Lévéque theory, E49) (19

= (%m()‘1 =0.48810398..., constant in definition of transient time, E4). (

= A(Q), error of approximation tbl = H(Q), see text below Eq#2)
maximum toA, taken over related interval &f
= %a‘”zcr(x) , Nernst thickness of diffusion layer for strip, m

=0/q, normalized complex amplitude of shear rate fluctuations
= 9%/g(x), argument of similarity concentration profiles
= §(X) = wo?(x)/D, locally normalized frequency, similarity argument in Eg)(
w w DZ
=ya= (LIL)YR =§0 (/)23 dy/_|'0 (I/L) dyx], form parameter of working electrode
O

= (Dx/@)'3, modified local thickness of diffusion layer, m
frequency of hydrodynamic fluctuations, rad s
= wtp, normalized frequency for electrode, Ea4)(

Special symbols

On, O¢
q

q
f, f

partial derivative with respect to argument, etc.

time average of fluctuating quantity= q(t)

complex amplitude of fluctuating quantity=q + g exp(iwt)
derivatives with respect iy, e.g f(0,£) = 0,f(n.&)In=0
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Subscripts
arbitrary (commonly: convex and contiguous) plane surface
circles and ellipses
rectangles
infinite stripes
triangles
similarity approximation

*4n oo >
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